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Overview
« Publications summarized in E. Cuoco+ (2021; but as of May 2020)...

30 i 1 1 | )

» 250
©
o
Q 20f
5 =
815} e Search
5 B Astro
= 10} Bl Waveform
S

5 -

2%10 2012 2014 2016 PAVER: 2020

year
“Number of publications 1s ”APP{icaHowS of ML have been conducted for
rapidly increasing!” more or less all Fopics of GW sciences!”

- To date, more papers have appeared 1n public, for example,
«  K.Kim+, ApJ (2021) (Search & Astro),
 J.Lee+, PRD (2021) (Waveform).
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Data Quality Improvement

« Challenges
 characterize non-stationary & non-Gaussian noise transients (a.k.a. glitches)

« subtract and denoise glitches

- h(¢) glitch characterization and classification

*  (convolutional) neural networks, wavelet detection filter, elastic-net based ML for understanding,

« Glitch characterization and classification with auxiliary channels

* neural networks, random forest, support vector machine, genetic programming (GP), ...
 R.Biswas+ (PRD ’13)

- Non-stationary noise subtraction and denoising

* deep neural networks, recurrent neural networks (RNN),
toatal-variation method, dictionary learning,
autoencoder, ...

hit)
Bl Aux
B Dencising
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Wavetorm Modeling

- Importance

« searches for CBC-GWs and estimation of source parameters require waveform
templates.

- Challenge
* need accurate and computationally efficient models

- Compact Binary Coalescence (CBC) only so far

« RNN-based dual-decoder sequence-to-sequence, Gaussian process regression, (deep) neural
networks, hierarchical ML, ...

+  J.Lee+ (PRD '21)

- Burst and continuous waves (tentative)
« K. Kim+

 under discussion/development (no concrete idea yet) 100.0%

(7) CBC
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Signal Searches

« Challenge

« enhance searches for four different types of GW signals

- CBC

- random forest, (shallow/deep, convolutional) neural networks, ...

« K.Kim+ (CQG ’15)
« K. Kim+ (PRD ’20)
K. Kim+ (ApJ ’21)

« Burst

« convolutional neural networks (CNN), GP,

wavelet detection filter, ...

« Continuous wave
« CNN, region-based CNN, ...

 Stochastic background
« Gaussian mixture model, ...

Kyungmin Kim

CBC
- Burst
mm CW
Bl Stochastic

44.4%
(8)
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Astrophysical Interpretation of Sources

Challenges
- measure/infer the parameters/properties of the source accurately and fastly

- estimate detection/event rates properly for population analysis

« Parameter estimation

- Gaussian process, random forest, neural networks, conditional variational autoencoder,
multivariate Gaussian posterior model, ...

« K. Kim+ (ApJ '21)
« K. Kim+ (under discussion)

- Low-latency source properties inference
« KNeighbors, ...

- Rates and populations of GW sources

PE
 Gaussian mixture, deep generative network, ... W Low-latency
Bl Rates
[ [ d - EM
- Identification of EM counterparts .
57.1%
« neural networks, ... (5)/0
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Application of
Machine Learning to

GW Science
- Examples -




ML for GW Search Related to Short GRBs

KK+, CQG 32 (2015) 24, 245002

*  Motivation
* Progenitors of short GRBs can radiate both GW and EM waves.
« proved by GW170817 and GRB170817 later on.

« Previous searches for LIGO’s S5 & S6 and Virgo’s VSR1, VSR2, & VSR3 data
couldn’t find any evidence from the candidate triggers (events) evaluated by a

ranking statistics of a matched-filtering-based search method
(Abadie+ (2010, 2012); Aasi+ (2014)).

* Neural networks can be a new ranking method for candidate events.

Input Layer Hidden Layer(s)
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ML for GW Search Related to Short GRBs

KK+, CQG 32 (2015) 24, 245002

« Date preparation
*  We use some triggers generated by the existing analysis pipeline which produces
* on-source triggers: regarded as containing a candidate GW signal
« off-source triggers: estimating background distribution around the candidate
« software 1njection triggers: evaluating the performance of the search pipeline

)

72's 972 s 48 s 6|48 972 s 72 s Off-source segment
T ———t— I ™

ool SHI ) s ol

AN HEIH/Z  GRERN % Buffer segment

2% [BERR  [HES N

o 5;5;5;5;55;5;5;5;5 \Z'H

-1097 -1025 53 -5 41 +49 1021 41003 £ Padding segment

*  We use the software injection triggers as signal samples and the off-source triggers
as background samples.

« software 1njection: considering both BNS and NSBH systems

Kyungmin Kim 2022 NRGW Winter School 9 of 18



ML for GW Search Related to Short GRBs

KK+, CQG 32 (2015) 24, 245002

For both neutron star binary (BNS) ~5% —10% 1mproved efficiency
and neutron star - black hole binary | O707I 4B NSBH Lo

Efficiency

Signal samples (~2 000 samples) / AR A Rt U R R
Background samples (~7 000 samples) ¥l =1 e

0% 102 10t 0% 102 10t 109
+ False Alarm Probability False Alarm Probability

10 Feature Parameters from .

CBC-GRB triggers Evaluating

Single IFO’s SNR Unknowit

ingle S S Triggers
Coherent SNR, New SNR

«  Coherent y2-test, bank y2-test,

auto-correlation y2-test value

« Mass 1 and Mass 2 of BNS or NSBH

-2
o

with two S5 & VSR1
triple-coincidence data
(070714B & 070923)

—
o

Fraction of found injections

Number of Classified Data

o : :
0 * 30 40 50 60 70 80
Distance [Mpc]

00 300 400 500
Maximum Likelihood Ratio
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ML for Low-Latency GW Search

« Motivation

KK+, Phys. Rev. D
101 (2020) 8, 083006

- Low-latency search (detection) pipeline: real-time (online) search pipeline which
produce candidate event triggers within O(min).

« c.f., offline search takes O(hrs) — O(days)
* GstLAL inspiral pipeline (Messick+ *17)

« Similar to the previous work,
we assume the output of
machine learning algorithms
can be used to rank candidate

events of low-latency pipeline.

* In this work, we consider
random forest and
neural networks.

Kyungmin Kim

Low-Latency Detection Pipeline

-----------
o' '0

SNR
GW Data — Matched x> Ranking ——1—» False Alarm Rate
Fllterlng Events /

llllllllllllll

L 4 y
f2.£4 ’ g f4.£6 @ f5.f6
o 9 "

K @
£1.63) 546 £2,63 163 £3.£4% 1162

fs,m\!b }ﬂﬁ Q} f1.f4
238, ® 1166 02,058 A

f1,£4 f4 ,f5 3.f6

Random Forest Neural Network
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ML for Low-Latency GW Search oK Py Rew D

Input Data

* Signal samples: mock data of GW 150914 using GstLAL inspiral pipeline
(~ 5 000 samples)

*  Background samples: time-slide data around the GPS times of injections of the MDC
(~ 172 000 samples)

* Features: massl, mass2, spinlz, spin2z, snr, and chisq (6 features)
* Train/Test data: 75%/25% of shuffled samples (no validation data)

Training Evaluation
*  Time for training (w/ ~ 122 000 samples of «  Time for evaluation (w/ ~ 45 000 samples of
6 features) on MacBook Pro 6 features): ~ O(100) ms
* Random Forest (scikit-learn): «  Qutput: probabilistic prediction between
~ 6—7 hrs for running GridSearchCV 0 and 1 — rank
with 288 combinations «  For the performance test of the evaluation result,

*  Neural Network (TensorFlow): 3 figure-of-merits were used:
~'7—10 mins «  Confusion matrix,
2-D histogram: In L vs. rank of ML,

Receiver Operation Characteristic (ROC) curve.
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ML for Low-Latency GW Search

KK+, Phys. Rev. D
101 (2020) 8, 083006

ﬁerformance Test on Classification

Remarks ‘ )

e MLAs found high ranks candidate
signals of GstLAL pipeline as well. :

e MLAs found more candidates
signals of lower signal-to-noise ‘l
ratios than GstLAL pipeline.

e Similar performance on identifying -
noise samples. )
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[
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H ko -
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@nsitivity in Detection Range

Remarks
signals generated from sources at

rate than GstLAL pipeline.

\_

e MLASs could capture more candidate

farther distances at lower false alarm
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ML for Identification of Lensed GWS sisomis i

« Motivation

- If GWs propagate around heavy mass systems, they can be lensed like EM

waves.

 If the time delay of two lensed 1images 1s short enough (~ms), the images would

be superposed.

h(f)

Source W Yy

-

Unlensed

Kyungmin Kim

2022 NRGW Winter School

Thin lens approximation

Strain amplitude of lensed GW in
frequency domain

h (f) = F()h(f)

where F(f) is the amplification factor
which is determined by the surface
mass density and the position
parameter y:

by
SoDs
where &, = \/(4GML/02)DLSDL/DS is

the Einstein radius of a lens

Y
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ML for Identification of Lensed GWS sisomis i

* Input data: spectrogram using IMRPhenomPv2 and constant-Q transform

« unlensed+non-precessing (Uy),
unlensed+precessing (Up), and
lensed+non-precessing (L)

* Poin Mass model and Unlensed + Noise Unlensed + Noise Unlensed + Noise
Singular Isothermal Sphere FCNSERIY (SNR = 30) (SNR = 50)

model
 Parameters

« mip,my. 5—55M®

Lensed + Noise Lensed + Noise Lensed + Noise

* D;: 10—1000Mpc (SNR = 10) (SNR = 30) (SNR = 50)

° DLS: 10—1000MpC
. My 10°—10°M

. ¥:107°—0.5pc n ;
« Noise: aLIGO’s DetHighPower model - 1’;’?: 1%)%?;1)]‘358581\%2

« 10 < SNR L0
(c.f. £23.6 for BBHs in GWTC-1)

« # of samples: 45,000 for each type and each lens model
 training (80%), validation (10%), and evaluation (10%)
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ML for Identification of Lensed GWS sisomis i

Regression for Parameter Estimation

Chirp mass of source Lens mass Redshift of source Redshift of Lens
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Summary

- ML 1s an exciting area of development 1n the field of multi-messenger astrophysics.

« ML can be used to

improve the quality of data,

predict the GW waveforms in areas of the signal parameter space not covered by
full numerical relativity,

search GW signals where the exact signal morphology 1s unknown,
speed up parameter estimation of GW signals,

determine the populations of GW sources and their properties, and
find EM counterparts to GW signals.

« ML techniques are poised to become essential tools in GW science and multi-
messenger astrophysics.

“There are still many untouched £opics wheve
we can be the pioneer and make canonical achievements! :
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Kip Thorne said...

“Gravitational Waves will be
a major tool for astronomy
into the next century.”

September 30, 2016
Public lecture @ CUHK, Hong Kong
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