기가하는 이상차 중액자 데이터 부서

Kyungmin Kim (Ewha Womans Univ.)

January 19, 2022

2022 NRGW Winter School

Additional read: '중력파 과학에도 인공지능이?!' (물리학과 첨단기술 2021년 6월 30권 6호)

Overview

• Publications summarized in E. Cuoco+ (2021; but as of May 2020)...

- To date, more papers have appeared in public, for example,
 - K. Kim+, ApJ (2021) (Search & Astro),
 - J. Lee+, PRD (2021) (Waveform).

Data Quality Improvement

- <u>Challenges</u>
 - characterize non-stationary & non-Gaussian noise transients (a.k.a. glitches)
 - subtract and denoise glitches
- h(t) glitch characterization and classification
 - (convolutional) neural networks, wavelet detection filter, elastic-net based ML for understanding, ...
- Glitch characterization and classification with auxiliary channels
 - neural networks, random forest, support vector machine, genetic programming (GP), ...
 - R. Biswas+ (PRD '13)
 - Non-stationary noise subtraction and denoising
 - deep neural networks, recurrent neural networks (RNN), toatal-variation method, dictionary learning, autoencoder, ...

Waveform Modeling

- <u>Importance</u>
 - searches for CBC-GWs and estimation of source parameters require waveform templates.
- <u>Challenge</u>
 - need accurate and computationally efficient models
- Compact Binary Coalescence (CBC) only so far
 - RNN-based dual-decoder sequence-to-sequence, Gaussian process regression, (deep) neural networks, hierarchical ML, ...
 - J. Lee+ (PRD '21)
- Burst and continuous waves (tentative)
 - K. Kim+
 - under discussion/development (no concrete idea yet)

100.0% (7)

CBC

Signal Searches

- <u>Challenge</u>
 - enhance searches for four different types of GW signals
- CBC
 - random forest, (shallow/deep, convolutional) neural networks, ...
 - K. Kim+ (CQG '15)
 - K. Kim+ (PRD '20)
 - K. Kim+ (ApJ '21)

Burst

• convolutional neural networks (CNN), GP, wavelet detection filter, ...

Continuous wave

- CNN, region-based CNN, ...
- Stochastic background
 - Gaussian mixture model, ...

Kyungmin Kim

Astrophysical Interpretation of Sources

- <u>Challenges</u>
 - measure/infer the parameters/properties of the source accurately and fastly
 - estimate detection/event rates properly for population analysis
- Parameter estimation
 - Gaussian process, random forest, neural networks, conditional variational autoencoder, multivariate Gaussian posterior model, ...
 - K. Kim+ (ApJ '21)
 - K. Kim+ (under discussion)
 - Low-latency source properties inference
 - KNeighbors, ...
- **Rates and populations of GW sources**
 - Gaussian mixture, deep generative network, ...
- Identification of EM counterparts
 - neural networks, ...

Kyungmin Kim

Application of Machine Learning to GW Science - Examples -

ML for GW Search Related to Short GRBs

• Motivation

KK+, CQG **32** (2015) 24, 245002

- Progenitors of short GRBs can radiate both GW and EM waves.
 - proved by GW170817 and GRB170817 later on.
- Previous searches for LIGO's S5 & S6 and Virgo's VSR1, VSR2, & VSR3 data couldn't find any evidence from the candidate triggers (events) evaluated by a ranking statistics of a matched-filtering-based search method (Abadie+ (2010, 2012); Aasi+ (2014)).
- Neural networks can be a new ranking method for candidate events.

ML for GW Search Related to Short GRBs

Date preparation

KK+, CQG **32** (2015) 24, 245002

- We use some triggers generated by the existing analysis pipeline which produces
 - on-source triggers: regarded as containing a candidate GW signal
 - off-source triggers: estimating background distribution around the candidate
 - software injection triggers: evaluating the performance of the search pipeline

- We use the software injection triggers as signal samples and the off-source triggers as background samples.
 - software injection: considering both BNS and NSBH systems

ML for GW Search Related to Short GRBs

KK+, CQG **32** (2015) 24, 245002

 $\sim 5\% - 10\%$ improved efficiency For both neutron star binary (BNS) and neutron star - black hole binary 070714B NSBH Classification 070714B BNS (NSBH)... with Efficiency 9.0 **Neural Network** ₩ ₩ 1 0.4 as post-Signal samples (~2 000 samples) / processing 0.2Background samples (~7 000 samples) DetSta DetSta ANN w/ likelihood ratio ANN w/ likelihood ratio 10^{-2} 10 False Alarm Probability False Alarm Probability 10 Feature Parameters from Evaluating Sensitivity **CBC-GRB** triggers Unknown Single IFO's SNRs Triggers Coherent SNR, New SNR Coherent χ^2 -test, bank χ^2 -test, auto-correlation χ^2 -test value 070714B NSBH Unknown Triggers ├─ DetStat Mass 1 and Mass 2 of BNS or NSBH H ANN Number of Classified Data 0 21 02 25 02 00 02 f found injections .0 with two S5 & VSR1 ъ́ 0.4 Fraction 6 triple-coincidence data (070714B & 070923) 0.0L 10 20 30 405070 60 Distance [Mpc] 100 200 300 400 500 600 Maximum Likelihood Ratio

ML for Low-Latency GW Search

- Motivation
 - Low-latency search (detection) pipeline: real-time (online) search pipeline which produce candidate event triggers within $\mathcal{O}(\min)$.
 - c.f., offline search takes $\mathcal{O}(hrs) \mathcal{O}(days)$
 - GstLAL inspiral pipeline (Messick+ '17)
 - Similar to the previous work, we assume the output of machine learning algorithms can be used to rank candidate events of low-latency pipeline.
 - In this work, we consider random forest and neural networks.

ML for Low-Latency GW Search

Input Data

- Signal samples: mock data of GW150914 using GstLAL inspiral pipeline (~ 5 000 samples)
- Background samples: time-slide data around the GPS times of injections of the MDC (~ 172 000 samples)
- Features: mass1, mass2, spin1z, spin2z, snr, and chisq (6 features)
- Train/Test data: 75%/25% of shuffled samples (no validation data)

Training

- Time for training (w/~ 122 000 samples of 6 features) on MacBook Pro
 - Random Forest (scikit-learn):
 ~6-7 hrs for running GridSearchCV with 288 combinations
 - Neural Network (TensorFlow): $\sim 7 - 10$ mins

Evaluation

- Time for evaluation (w/ ~ 45 000 samples of 6 features): ~ O(100) ms
- Output: probabilistic prediction between
 0 and 1 → rank
- For the performance test of the evaluation result, 3 figure-of-merits were used:
 - Confusion matrix,
 - 2-D histogram: ln L vs. rank of ML,
 - Receiver Operation Characteristic (ROC) curve.

ML for Low-Latency GW Search

KK+, Phys. Rev. D **101** (2020) 8, 083006

Kyungmin Kim

rate than GstLAL pipeline.

1100

1000

 10^{-13}

10-11 10-12

 10^{-9}

 10^{-8}

 10^{-10}

Combined False Alarm Rate [Hz]

ML for Identification of Lensed GWs KK+, ApJ 915 (2021) 2, 119

- Motivation
 - If GWs propagate around heavy mass systems, they can be lensed like EM waves.
 - If the time delay of two lensed images is short enough (~ms), the images would be superposed.

- Thin lens approximation
- Strain amplitude of lensed GW in frequency domain

$$h_L(f) = F(f)h(f)$$

where F(f) is the *amplification factor* which is determined by the surface mass density and the position parameter y:

$$y = \frac{\gamma D_L}{\xi_0 D_S}$$

where $\xi_0 = \sqrt{(4GM_L/c^2)D_{LS}D_L/D_S}$ is the Einstein radius of a lens

Kyungmin Kim

ML for Identification of Lensed GWs KK+, ApJ 915 (2021) 2, 119

- Input data: spectrogram using IMRPhenomPv2 and constant-Q transform
 - unlensed+non-precessing (U_N) , unlensed+precessing (U_P) , and lensed+non-precessing (L)
 - Poin Mass model and Singular Isothermal Sphere model
 - Parameters
 - $m_1, m_2: 5 55 M_{\odot}$
 - $D_L: 10 1000 \text{Mpc}$
 - D_{LS} : 10-1000Mpc
 - $M_L: 10^3 10^5 M_{\odot}$
 - $\gamma: 10^{-6} 0.5 \text{pc}$
 - Noise: aLIGO's DetHighPower model
 - $10 \le \text{SNR} \le 50$ (c.f. ≤ 23.6 for BBHs in GWTC-1)
 - # of samples: 45,000 for each type and each lens model
 - training (80%), validation (10%), and evaluation (10%)

 $m_1 = m_2 = 20M_{\odot}; M_L = 10^4 M_{\odot}$ $D_S = 1 \text{Gpc}; D_L = 800 \text{Mpc}$

$(SNR \approx 10)$	$(SNR \approx 30)$	$(SNR \approx 50)$
Lensed + Noise	Lensed + Noise	Lensed + Noise
(SNR ≈ 10)	(SNR ≈ 30)	(SNR ≈ 50)

ML for Identification of Lensed GWs KK+, ApJ 915 (2021) 2, 119

density

Regression for Parameter Estimation

SNR ~ 10 **SNR** ~ 30 SNR ~ 50 Classification $\frac{630}{(14.00\%)}$ $\frac{3841}{(85.34\%)}$ $\frac{29}{(0.645)}$ U_{N} 80 4468 (98.31%) $\frac{36}{(0.80\%)}$ 31 6464 (99.20%) $U\mathbf{p}$ U_N (0.0956)Thus haled True lobel irne tabe 1305(29.00%) 3165 (70.33% $\frac{30}{(0.67\%)}$ U_F (a) Case I - U_N (correct) 76 87 (1.93%) 4413 (1.69英) (88.31%) (96.07%) ___________ (96.07祭) 43 (0.96%) -11 (0.98%) 20 L^{+} SNR ~ 10 SNR ~ 50 SNR ~ 30 U_P U_{N} U_{23} Ū'r. Τ. Predicted label Predicted label Predicted label (a) Case I - PM (b) Case II - PM (c) Case III - PM 8836 (85.2456) 68727' $U_{\rm eV}$ (0.60%)(c) Case I - L_{PM} (correct) (14.16%)___________ (99.80%) - 6648 (98,84%) $\frac{52}{(1.16\%)}$ (0.64%)80 $U_{\mathbf{W}}$ U_F Thus held fino label true label 60 $^{34}_{(0.76\%)}$ SNR ~ 10 SNR ~ 30 SNR ~ 50 1335 818L (69.58% U_F (29.87%)138 1474353 4362 Τ. (3.27%)(95.73%) (8.07%)(96.98%) 1054344 L (2.40%)(1.07%)(96.63%) U_F U_K L U_N U_{2} L Predicted label Predicted label Predicted label (e) Case I - L_{SIS} (correct) (d) Case I - SIS (e) Case II - SIS (f) Case III - SIS

Kyungmin Kim

2022 NRGW Winter School

Summary

- ML is an exciting area of development in the field of multi-messenger astrophysics.
- ML can be used to
 - improve the quality of data,
 - predict the GW waveforms in areas of the signal parameter space not covered by full numerical relativity,
 - search GW signals where the exact signal morphology is unknown,
 - speed up parameter estimation of GW signals,
 - determine the populations of GW sources and their properties, and
 - find EM counterparts to GW signals.
- ML techniques are poised to become essential tools in GW science and multimessenger astrophysics.

"There are still many untouched topics where

we can be the pioneer and make canonical achievements!"

Kip Thorne said...

"Gravitational Waves will be a major tool for astronomy into the next century."

September 30, 2016 Public lecture @ CUHK, Hong Kong

Thank you

for

your attention!