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Overview
• Publications summarized in E. Cuoco+ (2021; but as of May 2020)…

• To date, more papers have appeared in public, for example,
• K. Kim+, ApJ (2021) (Search & Astro),
• J. Lee+, PRD (2021) (Waveform).
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“Number of publications is

rapidly increasing!”

“Applications of ML have been conducted for  
more or less all topics of GW sciences!”
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Data Quality Improvement
• Challenges

• characterize non-stationary & non-Gaussian noise transients (a.k.a. glitches)
• subtract and denoise glitches

•  glitch characterization and classification
• (convolutional) neural networks, wavelet detection filter, elastic-net based ML for understanding, 

…

• Glitch characterization and classification with auxiliary channels
• neural networks, random forest, support vector machine, genetic programming (GP), …
• R. Biswas+ (PRD ’13)

• Non-stationary noise subtraction and denoising
• deep neural networks, recurrent neural networks (RNN),  

toatal-variation method, dictionary learning,  
autoencoder, …

h(t)
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Waveform Modeling
• Importance

• searches for CBC-GWs and estimation of source parameters require waveform 
templates.

• Challenge
• need accurate and computationally efficient models

• Compact Binary Coalescence (CBC) only so far
• RNN-based dual-decoder sequence-to-sequence, Gaussian process regression, (deep) neural 

networks, hierarchical ML, …
• J. Lee+ (PRD ’21)

• Burst and continuous waves (tentative)
• K. Kim+
• under discussion/development (no concrete idea yet)
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Signal Searches
• Challenge

• enhance searches for four different types of GW signals

• CBC
• random forest, (shallow/deep, convolutional) neural networks, …
• K. Kim+ (CQG ’15)
• K. Kim+ (PRD ’20)
• K. Kim+ (ApJ ’21)

• Burst
• convolutional neural networks (CNN), GP,  

wavelet detection filter, …

• Continuous wave
• CNN, region-based CNN, …

• Stochastic background
• Gaussian mixture model, …
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Astrophysical Interpretation of Sources
• Challenges

• measure/infer the parameters/properties of the source accurately and fastly
• estimate detection/event rates properly for population analysis

• Parameter estimation
• Gaussian process, random forest, neural networks, conditional variational autoencoder,  

multivariate Gaussian posterior model, …
• K. Kim+ (ApJ ’21)
• K. Kim+ (under discussion)

• Low-latency source properties inference
• KNeighbors, …

• Rates and populations of GW sources
• Gaussian mixture, deep generative network, …

• Identification of EM counterparts
• neural networks, …
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Application	of	 
Machine	Learning	to	

GW	Science

-	Examples	-
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• Motivation
• Progenitors of short GRBs can radiate both GW and EM waves.

• proved by GW170817 and GRB170817 later on.
• Previous searches for LIGO’s S5 & S6 and Virgo’s VSR1, VSR2, & VSR3 data 

couldn’t find any evidence from the candidate triggers (events) evaluated by a 
ranking statistics of a matched-filtering-based search method  
(Abadie+ (2010, 2012); Aasi+ (2014)).

• Neural networks can be a new ranking method for candidate events.

ML for GW Search Related to Short GRBs
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KK+, CQG 32 (2015) 24, 245002
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• Date preparation
• We use some triggers generated by the existing analysis pipeline which produces

• on-source triggers: regarded as containing a candidate GW signal
• off-source triggers: estimating background distribution around the candidate
• software injection triggers: evaluating the performance of the search pipeline

• We use the software injection triggers as signal samples and the off-source triggers 
as background samples.
• software injection: considering both BNS and NSBH systems

ML for GW Search Related to Short GRBs
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ML for GW Search Related to Short GRBs
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    For both neutron star binary (BNS)  
    and neutron star - black hole binary 
    (NSBH)… 

Signal samples (~2 000 samples) / 
Background samples (~7 000 samples)

+
10 Feature Parameters from 

CBC-GRB triggers
• Single IFO’s SNRs
• Coherent SNR, New SNR
• Coherent 𝜒2-test, bank 𝜒2-test,  

auto-correlation 𝜒2-test value
• Mass 1 and Mass 2 of BNS or NSBH

  with two S5 & VSR1  
  triple-coincidence data  
  (070714B & 070923)

~5%—10% improved efficiency

070714B NSBH 070714B BNSClassification
with  

Neural Network
as post-

processing

Sensitivity
Evaluating
Unknown
Triggers

070714B NSBH

KK+, CQG 32 (2015) 24, 245002
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ML for Low-Latency GW Search
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• Motivation
• Low-latency search (detection) pipeline: real-time (online) search pipeline which 

produce candidate event triggers within .
• c.f., offline search takes 
• GstLAL inspiral pipeline (Messick+ ’17) 

• Similar to the previous work,  
we assume the output of  
machine learning algorithms  
can be used to rank candidate  
events of low-latency pipeline.
• In this work, we consider 

random forest and  
neural networks.

𝒪(min)
𝒪(hrs) − 𝒪(days)

GW Data False Alarm RateMatched
Filtering

SNR
!2

…

Ranking
Events

ML

Low-Latency Detection Pipeline

Random Forest Neural Network

KK+, Phys. Rev. D  
101 (2020) 8, 083006
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Input Data

Training Evaluation

ML for Low-Latency GW Search

• Signal samples: mock data of GW150914 using GstLAL inspiral pipeline  
(~ 5 000 samples)

• Background samples: time-slide data around the GPS times of injections of the MDC 
 (~ 172 000 samples)

• Features: mass1, mass2, spin1z, spin2z, snr, and chisq (6 features)
• Train/Test data: 75%/25% of shuffled samples (no validation data)

• Time for training (w/ ~ 122 000 samples of 
6 features) on MacBook Pro
• Random Forest (scikit-learn): 

~ 6—7 hrs for running GridSearchCV 
with 288 combinations

• Neural Network (TensorFlow): 
~ 7—10 mins

• Time for evaluation (w/ ~ 45 000 samples of  
6 features): ~ O(100) ms

• Output: probabilistic prediction between  
0 and 1 → rank

• For the performance test of the evaluation result,  
3 figure-of-merits were used:
• Confusion matrix,
• 2-D histogram: ln L vs. rank of ML,
• Receiver Operation Characteristic (ROC) curve.

12

KK+, Phys. Rev. D  
101 (2020) 8, 083006
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ML for Low-Latency GW Search

13

Sensitivity in Detection Range

Performance Test on Classification

KK+, Phys. Rev. D  
101 (2020) 8, 083006

Remarks
• MLAs found high ranks candidate 

signals of GstLAL pipeline as well.
• MLAs found more candidates 

signals of lower signal-to-noise 
ratios than GstLAL pipeline.

• Similar performance on identifying 
noise samples. 

Remarks
• MLAs could capture more candidate  

signals generated from sources at  
farther distances at lower false alarm  
rate than GstLAL pipeline.
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• Motivation
• If GWs propagate around heavy mass systems, they can be lensed like EM 

waves.
• If the time delay of two lensed images is short enough (~ms), the images would 

be superposed.

ML for Identification of Lensed GWs
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Lens

Source

line of sight

DLDLS
DS

γ

ξ
h( f ) hL( f )

α β

Unlensed Lensed

• Thin lens approximation
• Strain amplitude of lensed GW in 

frequency domain 
 
 
where F(f) is the amplification factor 
which is determined by the surface 
mass density and the position 
parameter : 
 
 
 
where  is  

the Einstein radius of a lens

y

ξ0 = (4GML /c2)DLSDL /DS

hL( f ) = F( f )h( f )

y =
γDL

ξ0DS

KK+, ApJ  
915 (2021) 2, 119 
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ML for Identification of Lensed GWs
• Input data: spectrogram using IMRPhenomPv2 and constant-Q transform

• unlensed+non-precessing ( ),  
unlensed+precessing ( ), and  
lensed+non-precessing ( )

• Poin Mass model and  
Singular Isothermal Sphere 
model

• Parameters
• m1, m2: 5—55
• DL: 10—1000Mpc
• DLS: 10—1000Mpc
• ML: —
• : —0.5pc

• Noise: aLIGO’s DetHighPower model
• 10  SNR  50 

(c.f.  23.6 for BBHs in GWTC-1)
• # of samples: 45,000 for each type and each lens model

• training (80%), validation (10%), and evaluation (10%)

UN
UP

L

M⊙

103 105M⊙
γ 10−6

≤ ≤
≤
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↖︎ ; 

; 

m1 = m2 = 20M⊙ ML = 104M⊙
DS = 1Gpc DL = 800Mpc

Unlensed + Noise
(SNR ≃ 10)

Unlensed + Noise
(SNR ≃ 30)

Unlensed + Noise
(SNR ≃ 50)

Lensed + Noise
(SNR ≃ 10)

Lensed + Noise
(SNR ≃ 30)

Lensed + Noise
(SNR ≃ 50)

KK+, ApJ  
915 (2021) 2, 119 
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ML for Identification of Lensed GWs
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Regression for Parameter Estimation

Classification
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Summary
• ML is an exciting area of development in the field of multi-messenger astrophysics.

• ML can be used to 
• improve the quality of data,
• predict the GW waveforms in areas of the signal parameter space not covered by 

full numerical relativity,
• search GW signals where the exact signal morphology is unknown,
• speed up parameter estimation of GW signals,
• determine the populations of GW sources and their properties, and
• find EM counterparts to GW signals.

• ML techniques are poised to become essential tools in GW science and multi-
messenger astrophysics.
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“There�are�still�many�untouched�topics�where� 
we�can�be�the�pioneer�and�make�canonical�achievements!”
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Kip Thorne said…
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“Gravitational Waves will be  
a major tool for astronomy  

into the next century.”


September 30, 2016  
Public lecture @ CUHK, Hong Kong



Thank�you�
for��

your�attention!


