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Goal: To understand the structure of neutron stars

[Problem 1] The ideal Fermi gas equation of states of white dwarfs or neutron stars, in which
quantum degeneracy pressure dominates, can be represented by polytropic form;

Pdeg = KΓρ
Γ = Knρ

(n+1)/n

where KΓ(Kn) and Γ are constants, ρ is density and n is called the polytropic index.

a) For the comparison, consider an adiabatic expansion of an ideal monoatomic gas for
which thermal (kinetic) pressure, Pkin = (ρ/m)kT , dominates and degeneracy pressure
is negligible. Show that

TV γ−1 = constant, PkinV
γ = constant, Pkin ∝ ργ

where γ = cP /cV = 5/3 is the ratio of specific heats (cP : specific heat at constant
pressure, cV : specific heat at constant volume).

b) For ideal Fermi gas, in the zero temperature limit, show that the number density of gas
(ng) and Fermi momentum (pF ) are related by

ng = g × 2π

3h3
p3F

where g is the degeneracy.

c) In the non-relativistic limit, show that

Pdeg = g × 4π

3h3
× 1

5m
× p5F

and Γ = 5/3 and n = 3/2. Why is Γ the same as γ obtained in a) despite the difference
in their physical origin?

d) In the full relativistic limit, show that

Pdeg = g × 4π

3h3
× c

4
× p4F

and Γ = 4/3 and n = 3.

e) For typical white dwarfs (ρ ∼ 106 g cm−3) and neutron stars (ρ ∼ 1014 g cm−3), compare
the magnitudes of degeneracy pressure (Pdeg), kinetic pressure of the ideal gas (Pkin) and
radiation pressure at kT = 1 MeV, 1 keV and 1 eV.

Ptotal = Pdeg +
ρ

m
kT +

1

3
aT 4

where k = 1.4× 10−16 erg K−1 = 8.6× 10−5 eV K−1.
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[Problem 2] At zero temperature limit, when the compact star is in a hydrostatic equilibrium
with spherical symmetry, compact star equation of state can be obtained by solving TOV
(Tolman-Oppenheimer-Volkoff) equation

dP (r)

dr
= −GM(r)ϵ(r)

c2r2

(
1 +

P (r)

ϵ(r)

)(
1 +

4πr3P (r)

M(r)c2

)(
1− 2GM(r)

c2r

)−1

where P (r) is the pressure, ϵ(r) is the energy density and M(r) is the enclosed gravitational
mass MG(r) for a given radius r. The gravitational and baryon masses of the star are defined
by

MG(r) =

∫ R

0
4πr2

ϵ(r)

c2

MA(r) = mA

∫ R

0
dr4πr2n(r)

(
1− 2GM(r)

c2r

)−1/2

where mA is baryon mass and n(r) is the baryon number density.

a) In the Newtonian limit (P ≪ ϵ and GM/c2 ≪ r), with polytropic EOS, show that TOV
equation can be reduced to Lane-Emden equation

1

ξ2
d

dξ
ξ2

dθ

dξ
= −θn

with ρ = ρcθ
n, r = aξ, and

a =

√
(n+ 1)Knρ

(1−n)/n
c

4πG
,

where ρc is the central density of a star.

b) The Lane-Emden equation can be solved with boundary conditions at the center;

θ(0) = 1, θ′(0) = 0.

For n < 5 (or Γ > 6/5), the solution decreases monotonically and have a zero at a finite
value ξ = ξ1: θ(ξ1) = 0 (see Table 1 for numerical values). This point corresponds to the
surface of the star, where P = ρ = 0. Show that the mass of the star is given as

M = 4π

[
(n+ 1)Kn

4πG

]3/2
ρ(3−n)/2n
c

∣∣∣∣∣
(
ξ2

dθ

dξ

)
ξ=ξ1

∣∣∣∣∣ .
c) In the full relativistic and Newtonian limit, show that the mass become independent

of radius. This implies that there exist maximum mass (Chandrasekhar mass) for the
compact stars (for which quantum degeneracy pressure dominates). What is the value of
the radius-independent mass?

d) In the Newtonian limit, show that the radius becomes independent of mass when n = 1.
Note that n = 1 is possible only when the system is far from an ideal Fermi gas; i.e.,
interactions are non-negligible. What is the value of the mass-independent radius?
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